AEN 2207 MATERIALS SCIENCE

Course Credits (CU): 4 CU i.e. 90 Contact Hours per semesterCourse Duration: 15 weeks (90hours) i.e. 45 LH, 45 PHCourse Type: CORE (BSC Agric Engineering III)Lecturer: Assoc.Prof J K Byaruhanga,PhD,Permanent Employment.
Mr. Martin Mugonyi,Msc Part time Employment

1. Course Description

This course introduces the student to the scienceof engineering materials. It covers atomic structure, solidification and crystal formation, solid solutions, alloys as well as the science of polymers, ceramics and composites.

2. Course Objectives

The objectives of this course are:

- To give a broad introduction into the principles of atoms and the forces holding them together.
- To introduce the students to the concepts of solidification and crystal formation in engineering materials.
- To equip the students with the knowledge on strengthening mechanisms, structure and formulation of engineering materials
- To prepare the students for the advanced courses in Materials Science and Engineering

3.Recommended Texts

- William D. Callister Jr., Materials Science and Engineering, 2nd Edition, John Wiley and sons 2004.
- Anderson et al, Materials science, 4th Edition, Chapman and Hall, 1990.

4. COURSE CONTENT, METHODS OF INSTRUCTION, TOOLS AND EQUIPMENT REQUIRED

TOPIC	CONTENT	METHOD OF INSTRUCTION / Time allocated	TOOLS / EQUIPMENT NEEDED
	Classification of Materials.Requirements for modern engineering materials	Interactive lectures (2hrs)	Chalk / BB LCD and computer
ATOMIC STRUCTURE AND INTERATOMIC BONDING	 Atomic Structure. Atomic Bonding In solids. 	Interactive lectures (4 hrs)	Chalk / BB or Markers / Flip charts
SOLIDIFICATION AND STRUCTURAL CRYSTALLINITY OF MATERIALS	 Crystal Structures Crystallographic directions and planes Crystalline and Non-Crystalline Materials, Interplanar Spacing 	Interactive lectures (4 hrs)	Chalk / BB LCD and computer
IMPERFECTIONS IN SOLIDS:	Point Defects.	Interactive lectures (4 hrs)	Chalk / BB LCD and

SOLID SOLUTIONS AND PHASE DIAGRAMS:	 Line defects. Interfacial Defects. Volume Defects Solid Solutions. Equilibrium Phase Diagrams of Unary. Binary, Peritectics. Eutectics, Eutectoids. Non-equilibrium Phase Diagrams. Coring, Application and Examples of Phase Diagrams. 	Interactive lectures (8 hr)	computer Chalk / BB or Markers / Flip charts
DIFFUSION IN SOLIDS:	 Mechanism of solidification. Steady state diffusion. Fick's Laws. Dislocation Motion. Non-steady state diffusion. Factors influencing diffusion. Nucleation and growth 	Interactive lectures (12hr)	Chalk / BB or Markers / Flip charts
STRENGTHENING MECHANISMS	 Grains and Grains Boundaries, Dislocations and phase deformations, strengthening by grain refinement. Solid solution hardening. Strain hardening. Strain Ageing. Cold work. Recovery and Recrystallisation. Precipitation Hardening 	Interactive lectures (4hr)	Chalk / BB or Markers / Flip charts
STRUCTURES AND CHARACTERISTICS	 Polymers and Plastics Ceramics Composites 	Interactive lectures with (8 hrs)	Chalk / BB or Markers / Flip charts
PRACTICALS		45hrs	Equipped materials science lab

5. SUMMARY OF TIME NEEDED

Interactive lectures, practicals	45 hrs 45 hrs
6. OVERALL COURSE EVALUATION	
Continuous Assessment Test and	30-50%

Class practicals

Final examination

50-70%