AEN 3204 WATER RESOURCES ENGINEERING

Lecturer
Mr. Iwadra Michael
MSc Water Resources Engineering (KULeuven, VUB, Belgium),
MSc Hydrotechnics: Irrigation and Drainage Engineering (Moldavia),
Fulltime Lecturer.

Course Type: Core (B.Sc. Agric. Engineering III)

1. COURSE DESCRIPTION

Course Credits (CU): 3 CU i.e. 45 Contact Hours per semester

Course Duration: 15 weeks (45 hours) i.e. 30 LH, 30 PH

COURSE DESCRIPTION
Water resource utilization and development, Hydrological cycle, rainfall analysis, infiltration, evaporation, run-off processes, Roof and Rock water harvesting. Ground water seepage, soil water capacity, draw-down, design of water wells. Well water pumping systems. Water resources development: weirs, flumes and stream gauge-instruments

2. COURSE OBJECTIVES

To produce agricultural engineering graduates who:
- Understand concepts of water resources engineering and its development
- Are competent in design, installation and use of water resources structures

3. RECOMMENDED REFERENCES FOR READING

4. COURSE CONTENT, METHODS OF INSTRUCTION, TOOLS AND EQUIPMENT REQUIRED

<table>
<thead>
<tr>
<th>Lecture</th>
<th>CONTENT</th>
<th>METHOD OF INSTRUCTION / Time allocated</th>
<th>TOOLS / EQUIPMENT NEEDED</th>
</tr>
</thead>
</table>
| LECTURE 1. Introduction to water resources | Overview of global water resources
Occurrence of fresh water resources
Water resources and utilisation in Uganda | Interactive Lecture (2 hrs) | LCD Projector and Screen, BB/Chalk, Maps |
| LECTURE 2. Hydrological cycle | The hydrologic cycle
Rainfall-runoff relationships
Methods of determination of run-off (runoff coefficient, rational, phi-index, Curve Number, Unit hydrograph methods) | Lecture (2 hrs) | LCD Projector and Screen, BB/Chalk |
| LECTURE 3. Hydrological cycle | Evaporation, transpiration
Infiltration | Lecture (2 hrs) | Projector and Screen, BB/Chalk |
| LECTURE 4 Water Harvesting | Design rainfall
Roof water harvesting systems components
Water storage systems and design/sizing | Lecture (2 hrs) | LCD Projector and Screen, BB/Chalk |
| LECTURE 5 Water Harvesting | Rock and hard surface harvesting systems | Lecture (2 hrs) | LCD Projector and Screen, BB/Chalk |
| LECTURE 6 Groundwater | Types of groundwater formations, aquifers
Ground water seepage
Darcy's Law, Hydraulic Conductivity, Transimisivity, storativity, groundwater potential | Lecture (2 hrs) | LCD Projector and Screen, BB/Chalk |
| LECTURE 7 Groundwater | Groundwater flow
Draw down and Well flow equations | Lecture (2 hrs) | LCD Projector and Screen, BB/Chalk |
| LECTURE 8 Groundwater | Well pumping and recovery tests
Interpretation of pumping tests (Theism method, Jacob-Cooper method, etc) | Lecture (2 hrs) | LCD Projector and Screen, BB/Chalk |
| LECTURE 9 Groundwater | Well design
Protection of springs and shallow wells | Lecture (2 hrs) Field trip for roof water harvesting and well design and installation (8) | LCD Projector and Screen, BB/Chalk, Transport (30 |
LECTURE 10
Groundwater
- Well water pumping systems
- **Lecture (2 hrs)**
- LCD Projector and Screen, BB/Chalk

LECTURE 11
Water resources development
- Hydrometry
 - Water depth, level, volume measurement methods,
 - Gauging stations
- **Lecture (2 hrs)**
- Field trip for well design and installation (10 hrs)
- LCD Projector and Screen, BB/Chalk

LECTURE 12
Water resources development
- Hydrometry
 - Velocity and discharge measurement
 - Float method
 - Chemical dilution, Allan’s method
 - Current meter method
- **Lecture (2 hrs)**
- Field work- depth, discharge and velocity measurement (6 hrs)
- LCD Projector and Screen, BB/Chalk

LECTURE 13
Water resources development
- Weirs
 - Sharp crested weirs
 - Long crested weirs
- **Lecture (2 hrs)**
- LCD Projector and Screen, BB/Chalk

LECTURE 14
Water resources development
- Flumes
 - Long throated flume
 - Short throated flume
 - H-flumes
 - Parshall flumes
- **Lecture (2 hrs)**
- LCD Projector and Screen, BB/Chalk

LECTURE 15
Water resources development
- Flumes
 - H-flumes
 - Parshall flumes
- **Lecture (2 hrs)**
- Field work- weirs and flumes discharge measurement (6 hrs)
- LCD Projector and Screen, BB/Chalk

5. SUMMARY OF TIME NEEDED
- Interactive lectures covering theory: 30 hrs
- Class and station-based practical: 12 hrs
- Field visits: 18 hrs

6. OVERALL COURSE EVALUATION
- **Continuous Assessment Test**
 - At least 2 tests (first after lecture 8 and second after lecture 12)
 - Marked out of 20 each
- **Continuous Assessment (Assignments, practical, Field work)**
 - At least 1 assignment
 - Practical
 - Field trip by attendance
 - 20%
- Marked out of 20 each

Final examination

60%