1. FST 2101 FOOD ENGINEERING I

2. COURSE INSTRUCTOR(S)

- Associate Prof W. Kyamuhangire
- Mr. Robert Mugabi

3. COURSE TYPE:

Core course for Year II BSc. Food Science & Technology

4. COURSE STRUCTURE

Course is 3 credit units (3 CU): 2 lecture hours and 2 practical hours per week for 15 study weeks; [i.e. 30 lecture hours & 30 practical hours equivalent to 45 contact hours].

5. COURSE DESCRIPTION

Basic concepts of food process engineering; First and second law of thermodynamics; Heat and mass balance; Heat transfer; The flow of fluids; Physical properties of foods: optical, thermal, electrical, mechanical, geometrical and rheology of food (integrated within the different topics).

6. COURSE OBJECTIVES

- 1. Develop their problem solving skills.
- 2. Be able of evaluating material and energy balance in processing industry.
- 3. Acquire a fundamental understanding of heat transfer mechanisms.

4. Increase the basic understanding of selected unit operations in food processing.

7. RECOMMENEDED REFERENCES

- 1. R.P. Singh, and D.R. Heldman. (1993). Introduction to Food Engineering, 2nd Ed., Academic Press.
- 2. P.G. Smith. (2003). Introduction to Food Engineering, Kluwer Academic/Plenum Publishers

8. COURSE CONTENT, METHODS OF INSTRUCTION, TOOLS AND EQUIPMENT

TOPIC	CONTENT	METHOD OF INSTRUCTION/ Time allocation (i.e. contact hours)	TOOLS/ Equipment needed
 Basic Principle: Food Process Engineering 	 Conservation of mass and energy; overall view of engineering process Dimensions and Units; units, dimensions, dimensionless ratios, dimensional consistency & unit conversion 	-Interactive lectures (5 hrs) -Take home assignments - Tutorials (3 hrs)	LCD projector/ BB/ White boards / Flip charts
2. Material and Er Balances	 Material Balances; basis & units, types of process situations (continuous & batch processes) Energy balances 	-Interactive lectures (9 hrs) -Take home assignments - Tutorials (6 hrs)	LCD projector/ BB/ White boards / Flip charts/ Materials
3. First and Secor	nd Law • First law of thermodynamics	-Interactive lectures	LCD projector/ BB/

of Thermodynamics	 Second law of thermodynamics Law of conservation 	(4 hrs)	White boards / Flip charts/ Materials
4.	Mid semester Evaluation	- Mid semester test (2 hrs) - Revision of test (2 hrs)	
5. Fluid flow theory	 Fluid statics Fluid dynamics; mass & energy balances, Bernoulli's equation Viscosity; Newtonian & Non- Newtonian fluids Laminar & turbulent flow Energy losses in flow; friction in pipes, losses in bends & fittings, pressure drop through equipments, equivalent length of pipes 	- Interactive lecture (9 hrs) - Tutorials (6 hrs)	LCD projector/ BB/ White boards / Flip charts
6. Heat transfer theory	 Heat conduction Surface heat transfer Unsteady-state heat transfer Radiation heat transfer Convection heat transfer; natural & forced Overall heat transfer coefficients Steam tables 	-Interactive lectures (6 hrs) -Take home assignments -Tutorials (4 hrs)	LCD projector/ BB/ White boards / Flip charts/ Materials
7. Heat transfer applications	 Heat exchangers; continuous-flow heat exchangers, scraped surface heat exchangers, plate heat exchangers Thermal processing; thermal death, equivalent killing power at other temperatures 	 Interactive lectures (9 hrs) Take home assignments Tutorials & revision (6 hrs) 	LCD projector/ BB/ White boards / Flip charts/ Materials
8.	End of semester Evaluation	- End of semester test (2 hrs) -Revision of test (2 hrs)	

9. SUMMARY OF TIME NEEDED

Lecture hours

30 hr 30 hr

Tutorial hours

10. OVERALL COURSE EVALUATION

- Individual assignments and test 40%
- Final exam

60%