MCN 7105 Structure and Interpretation of computer programs
Course Description
The course provides a survey of techniques and principles in the underlying design and imple- mentation of systems. The course focuses on symbolic computation and less on numerical examples from the calculus and number theory. Effective software engineers need to know efficient techniques that serve as building blocks in the design an implementation of software systems. Today, most systems require a collection of skills to provide an efficient implementation. Therefore this course enriches through broadening rather than acceleration. The programming language used has a sim- ple syntax and an intuitive semantic model, allowing a focus on concepts. Throughout, the focus is on understanding computational tools by building them, rather than covering many language features

Aims
The aim of the course is to equip students with the knowledge to understand and design software systems.

Learning outcomes
• Strong understanding of basic concepts in computer science (including some material on lists and trees.

• Ability to write programs from scratch in the programming language Scheme while under- standing the meaning of what is being written.
• Proper attention to design and testing.

Teaching and Learning The course is structured around a strong textbook and associated in- structional development environment, though lectures offer elaboration on ideas, different examples, and additional material. Short assignments during this course are interspersed with a substantial programming project using object-oriented techniques, such as an adventure game.

Indicative Content
• The fundamentals of Lisp computation: names and values, evaluation, function definition and evaluation, and predicates.

• Higher-order functions, including the use of functions as parameters. Introduce the definition of functions with LAMBDA, and the use of functions that return functions as values.

• Function definition and application, making decisions (conditional expressions), working with aggregated data (structures), working with unbounded data (lists and recursion), information hiding (local definitions), functional abstraction (functions as values), mutation (changing name-value bindings), and encapsulation (making objects).

• Data abstraction and techniques for implementing ”abstraction barriers. Use of scheme pairs to implement lists, trees, and other data structures. Cover advanced data abstraction tech- niques: tagged data, data-directed programming, and message-passing.

• State and assignment: The use of state and local assignment to write efficient programs; introduce the idea of object-oriented programming, assignment, and the environment model of evaluation that is needed to understand how local state is maintained in Scheme.

• Introduction to mutable data, concurrency; streams, model time-varying state information within the functional programming approach

• Metalinguistic abstraction: The creation of new programming languages, as a still more pow- erful abstraction technique. Two major examples are presented: Lisp and a logic programming language the course follows the fourth chapter of the text.
Assessment
• Test, Project (40%)

• Final Examination (60%)

Reading Materials/Indicative sources
• Structure and Interpretation of Computer Programs by Abelson and Sussman (second edition, MIT Press, 1996)

