MCN 7105: Structure & Interpretation of Computer Pro- grams
(a) Description:
The course provides a survey of techniques and principles in the un- derlying design and implementation of systems. The course focuses on symbolic computation and less on numerical examples from the cal- culus and number theory. Effective software engineers need to know efficient techniques that serve as building blocks in the design an im- plementation of software systems. Today, most systems require a col- lection of skills to provide an efficient implementation. Therefore this course enriches through broadening rather than acceleration. The pro- gramming language used has a simple syntax and an intuitive seman- tic model, allowing a focus on concepts. Throughout, the focus is on understanding computational tools by building them, rather than covering many language features

(b) Aims/Goals:
The aim of the course is to equip students with the knowledge to understand and design software systems.

(c) Learning outcomes
• Strong understanding of basic concepts in computer science (in- cluding some material on lists and trees.

• Ability to write programs from scratch in the programming lan- guage Scheme while understanding the meaning of what is being written.
• Proper attention to design and testing.

(d) Learning and teaching:
The course is structured around a strong textbook and associated in- structional development environment, though lectures offer elabora- tion on ideas, different examples, and additional material. Short as- signments during this course are interspersed with a substantial pro- gramming project using object-oriented techniques, such as an adven- ture game.

(e) Indicative Content:
• The fundamentals of Lisp computation: names and values, eval- uation, function definition and evaluation, and predicates.

• Higher-order functions, including the use of functions as param- eters. Introduce the definition of functions with LAMBDA, and the use of functions that return functions as values.

• Function definition and application, making decisions (conditional expressions), working with aggregated data (structures), work- ing with unbounded data (lists and recursion), information hid- ing (local definitions), functional abstraction (functions as val- ues), mutation (changing name-value bindings), and encapsula- tion (making objects).

• Data abstraction and techniques for implementing ”abstraction barriers. Use of scheme pairs to implement lists, trees, and other data structures. Cover advanced data abstraction techniques: tagged data, data-directed programming, and message-passing.
• State and assignment: The use of state and local assignment to write efficient programs; introduce the idea of object-oriented programming, assignment, and the environment model of evalu- ation that is needed to understand how local state is maintained in Scheme. Introduction to mutable data, concurrency; streams, model time-varying state information within the functional pro- gramming approach

• Meta linguistic abstraction: The creation of new programming languages, as a still more powerful abstraction technique. Two major examples are presented: Lisp and a logic programming language the course follows the fourth chapter of the text.
(f) Reading Materials/Indicative sources:
• Structure and Interpretation of Computer Programs by Abelson and Sussman (Second edition, MIT Press, 1996)

(g) Assessment:
Assessment will be by Tests and projects (40%) and Final Examination

(60%)

