MCS 7108 Software Architecture
Course Description
Very little software is actually written from scratch. Instead, software projects usually rely on existing libraries, frameworks, and components. Such building blocks must be carefully integrated to ensure that the resulting applications are robust and maintainable. The necessity to integrate, reuse, and maintain large collections of software components has led to important challenges for computer scientists and engineers which, in turn, resulted in the elaboration of various component models and integration mechanisms..
Aims
To equip students with issues of large-scale software development usually referred to as ”software architecture”, including architectural design and documentation, component models and technolo- gies, software product lines, frameworks, and aspect-oriented programming
Learning Outcomes
• To understand the factors and issues that come into play in the development of large-scale software systems.
• To understand the concepts, terminology, and notation of various component models.
• To understand a variety of integration mechanisms used to build large scale systems, and to apply the mechanisms in a concrete situation.
• To be able to clearly document non-trivial software architectures.
• To evaluate and discuss the properties of different software architectures.
• To know about a number of innovative approaches to software architecture as proposed by the research community.
Teaching and Learning
The class will be conducted on face to face, in class lecture. The lectures should include examples of software architectures of varying sizes. Students should develop their own architectures

Indicative Content
• Introduction: What is software architecture, Software design levels, and architectural views, current and emerging status of software architecture?
• Architectural Styles: pipes and filters, object oriented, event-based, layered systems, reposi- tories, interpreters, process control, other familiar architectures like client-server.
• Architectural design guidance: Design spaces and rules, user interface design guidance, do- main specific design guidance.
• Formal models and specifications: the value of architecture formalism, formalizing the archi- tecture for a specific system, examples of formal notations

• Linguistic Issues: Requirements for architecture description languages, notations for compo- nents connectors- constraints, tools for architecture descriptions

Assessment
• Test, Project, Research coursework (40%),
• Final examination (60%)
Reading Material/Indicative sources
• L. Bass, P. Clements, R. Kazman. Software Architecture in Practice, Second Edition. Addi- son Wesley Professional, 2003

• M. McBride. The Software Architect. Communications of the ACM, 50(5):75-81, May 2007

• P. Clements et al. Documenting Software Architectures: Views and Beyond. Addison Wesley
Professional, 2003

