PHY7106: STATISTICAL MECHANICS 3(3-0)

1. Course Name: Statistical Mechanics

2. Course Code: PHY7104

3. Credit Units: 3

4. Course Description:

This course starts with applications in equilibrium statistical mechanics from the imperfect gas treatment. The cooperative and critical phenomena are then introduced, leading to the group theory. Finally, the non-equilibrium statistical mechanics is introduced.

5. Course Objectives:

At the end of the course, the students should be able to:

- Use applications in equilibrium statistical mechanics.
- Apply the cooperative phenomena in ferromagnetism.
- Use the critical phenomena in group theory.
- Distinguish between equilibrium and non-equilibrium statistical mechanics.

6. Course Outline:

Content	Hours
Applications of Equilibrium Statistical Mechanics:	10
Imperfect gas: Interaction potentials and virial coefficients; radial wave	
function; Bose-Einstein condensation.	
Cooperative Phenomena: Ising-Model (1D & 2D)	10
Mean field approximation; Order-Disorder Phase changes;	
Structural Phase Changes; Ferromagnetism-Weiss Theory	
Critical Phenomena:	15
hermodynamics of Phase Transitions; Critical Exponents; Scaling	
Hypothesis; Introduction to Group Theory of Critical Phenomena	

(Wilson's renormalization)	
Non-equilibrium Statistical Mechanics:	10
Fluctuation and noise; Brownian Motion: Correlation, Spectral density	
and autocorrelation functions, Nyquist theorem, Linear response	
theory, Kramers – Kronig relations, Fluctuation Dissipation Theorems;	
Onsager's theory and applications; The Boltzmann transport equation:	
Relaxation time equation, Perturbation approach, Ritz-Rayleigh method,	
Method of Invariants; The statistical Density Operator: Time evolution	
of the statistical operator, Canonical density operator, Grand canonical	
density operator, Application to the ID harmonic oscillator, The Green-	
Kubo formulation.	
Total	45

7. Mode of Delivery:

This course will consist mainly of lecture sessions.

8. References:

- 1. Reif, Frederick: Fundamentals of Statistical and Thermal Physics.
- 2. F. Mandl, Statistical Physics, John Wiley(1972)
- 3. Bipin K. Agarwal and Melvin Eisner , Statistical Mechanics, John Wiley (1988)