PHY7204: SOLAR THERMAL CONVERSION

1. Course Name: Solar Energy

2. Course Code: PHY7204

3. Credit Units: 3

4. Course Description:

This course discusses renewable energy sources and solar energy.

5. Course Objectives:

At the end of the course, the students should be able to:

- Discuss limitations of renewable energy sources.
- Give the relationship between photosynthesis and energy production.
- Carry out thin-film deposition.
- Characterize solar cells.

6. Course Outline:

Content	Hours
Introduction to renewable energy sources (biomass, wind energy, ocean current energy) and limitations.	7
Renewable energy conversion pathways, solar spectra- natural radiation, some goals of material science for solar energy conversion systems.	7
Photosynthesis- its relation to energy production.	5
Thin film technology- Deposition of thin films, methods of thin film deposition.	5
Solar thermal- Solar collector surfaces, selectively solar absorbing surfaces.	5
Energy conservation and thermal properties, models for microstructure and thermal & optical properties, degradation and durability (accelerated ageing tests, modeling of optical properties during ageing, lifetime	6

evaluations, degradation kinetics of solar absorber coatings).	
Solar Cells and solar cell types- Photoelectric, Photovoltaics, Photoelectrochemical solar cells (principles, characterizing and analyzing solar cells, types and kinds of each type),	7
Installation and care of PV systems	5
Total	45

7. Mode of Delivery:

This course will consist of lecture sessions and there will also be data analysis using theories leant.

8. References:

- 1. John Twidell and Tony Weir. Renewable Energy Resources. Taylor & Francis Gp (1986) (Textbook)
- 2. John A. Duffie and William A. Beckman. Solar Engineering of Thermal Processes. John Wiley & Sons.
- 3. William B. Stine. Solar Energy Fundamentals and Design with Computer Applications. John Wiley & Sons.