PHY7211: ADVANCED NUCLEAR PHYSICS

1. Course Name: Advanced Nuclear Physics

2. Course Code: PHY7211

3. Credit Units: 3

4. Course Description:

This course deals with nuclear reactions and elementary particle physics.

5. Course Objectives:

At the end of the course, the students should be able to:

- Discuss nuclear models in relation to stability of atoms.
- Determine conservation of physical quantities.
- Use elementary particle physics in nuclear analysis.

6. Course Outline:

Content	Hours
Review of fundamentals of Nuclear Physics- the nuclear atom (Rutherford's model and the Bohr's modifications).	7
Nuclear structure & models; Nuclear stability; Nuclear moment, parity and statistics.	8
Nuclear reactions (scattering, collisions)- conservation of physical quantities, Q-value determination, cross-sections, the Breit –Wigner formula.	8
Excited states of nuclei-nuclear decays (alpha, beta and gamma) and spontaneous fission;	8
Elementary particle physics	9
Total	45

7. Mode of Delivery:

This course will consist of lecture sessions and there will also be data analysis using theories leant.

8. References:

- 1. K.S. Krane, Introductory Nuclear Physics. John Wiley. (Textbook)
- 2. S.W.C. Williams. Nuclear and Particle Physics. Oxford Science Publications
- 3. H Enge. Introduction to Nuclear Physics. Addison Wesley
- 4. Cottingham. Introduction to Nuclear Physics. Cambridge Univ. Press.