This course is meant to develop the ability to think abstractly, make conjectures and construct rigorous mathematical proofs. It brings to light the basic philosophy, purpose and history behind the development of groups as abstract algebraic structures. It makes one understand how mappings can preserve algebraic structure, and through such mappings, learn how to determine when two seemingly different algebraic structures turn out to be the same (isomorphic).
By the end of this course, the student should be able to:
construct proofs in this area.